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08028 Barcelona, Spain
c Departament de Fı́sica Aplicada, Universitat Politècnica de Catalunya, Dr. Gregorio Marañón 50,
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Propagating reaction–diffusion fronts constitute one of the paradigms in the realm of the
nonlinear chemical phenomena. In this paper different situations are considered. Firstly,
we discuss the problem of front propagation in a two-variable chemical system exhibiting
multiple stationary states. Emphasis is put on the question of velocity selection. In section 3
of our contribution, the question of front propagating in spatially modulated and noisy media
is addressed. Finally, we also briefly comment on the problem of reaction–diffusion fronts
in non-quiescent media. In this particular scenario we simply aim at introducing the two
basic propagation modes, i.e., thin versus distributed reaction fronts, that are identified in
our numerical simulations.

1. Introduction

Front propagation phenomena arise in a large variety of spatially extended systems
in physics, chemistry and biology [4,6,14,15]. In a general sense, the propagation of
a front may be viewed as the invasion of a state by a different one. Such a situation
occurs typically in systems which have been inhomogeneously prepared in steady states
of different stability. Certainly the problem has a long history on its own, specially in a
chemical context where they were first reported by Luther over ninety years ago [3,11].
In such a particular chemical scenario, experimental realizations of front propagation
situations are abundant as can be easily verified by consulting the recently published
paper by Epstein et al. [5], who briefly review some of the most genuine nonlinear
chemical behaviors. On the other hand, theoretical treatments, and particularly those
based on reaction–diffusion partial differential equations [7], have also configurated
during these last decades a large body of literature, starting with the classical and
celebrated papers by Fisher [8] and Kolmogorov [10].

In this paper, we consider different situations related to the problem of front
propagation. The first addressed question refers to one-dimensional propagating fronts
in a two-variable autocatalytic chemical system showing multiple stationary states. The
analysis turns out to be singularly interesting for several reasons but mainly because it
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enables us to really refer to an example of front propagation under conditions of strictly
simultaneous multistationarity. What we mean with this statement is that within a
wide and well defined range of values for the control parameters of the system, we
will be dealing with situations of coexistence of three steady states of different relative
stability. This opens the possibility of analyzing, for the same set of control para-
meters and depending on the chosen initial condition, three possible front conditions
which belong to two different categories: stable/unstable and stable/metastable con-
nections. This turns out to be singularly relevant in relation with the application of
the well-known marginal stability criteria commonly invoked to predict the selected
front velocity. As it will become apparent later on this is a very sensible question
especially when approaching the hysteresis limit. Apart from that, the simultaneous
coexistence of up to three steady states possibilitates the appearance of genuine and
rather uncommon situations of propagation of multiple fronts originating from a single
initial profile.

The largest body of results presented in section 2 comes from the numerical
resolution of the discretized version of the set of reaction–diffusion equations on which
our model for front propagation is based. However, as much as possible they are
supplemented with analytical calculations. Actually it turns out that particular exact
results for the front profiles and propagation velocities can be obtained both for the
stable/metastable and stable/unstable connections. In addition, the band of allowed
front velocities for degenerated solutions, typical of the invasion of an unstable state by
a stable one under not sufficiently localized initial conditions (“non-compact support”),
can be also analytically calculated.

In section 3 we consider a generic reaction–diffusion front which propagates
either two-dimensionally under a spatial modulation of the local front velocity or one-
dimensionally but subjected to spatio-temporal fluctuations. In the first case we present
analytical and numerical results which give the final steady state velocity and front
shape. Both arise from a non-trivial interplay between the local curvature affects and
the global competition process between different maxima of the local velocities. When
dealing with a noisy environment, we introduce external fluctuations (colored Gaussian
noise) which preserve the connected steady states but play a major role in the front
interface. The final conclusion is that the velocities are systematically enhanced by a
factor directly related to the noise intensity.

In section 4, the examined scenario corresponds to a reaction–diffusion front
propagating in a non-quiescent but turbulently stirred medium. In this regard, stirring
is numerically simulated by using a sort of “synthetic turbulence” generator. We
simply comment on the pair of distinctive propagation regimes which are identified in
our simulations: the thin front regime, characteristic of a distorted although still sharp
interface, and the distributed reaction front regime. In both cases the front speed is
enhanced with respect to propagation in a non-advected medium.
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2. Fronts in a multistationary chemical system

2.1. The chemical model

Over thirty years ago, Sel’kov [21] proposed a simple kinetic model of an
open monosubstrate enzyme reaction which was intended to reproduce some fea-
tures of the self-oscillatory behavior observed in glycolisis. Actually, on what fol-
lows we will refer to a reduced and partially irreversible version of that chemical
scheme [24]

A
k1



k−1

X, X + 2Y
k2

→ 3Y , Y
k3

→ B. (1)

Convenient redefinitions of the time and concentration variables enables us to
write the dimensionless forms of the rate equations appropriate to (1) as
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k3
, (2){

dx/dt = α− γx− xy2,
dy/dt = xy2 − y,

in terms of the two basic control parameters α and γ.

2.2. Homogeneous steady states: existence and stability

It is a simple analytical matter to find the steady states corresponding to the just
given pair of kinetic equations. Apart from the always existing solution corresponding
to the absence of the autocatalytic species, x = α/γ, y = 0, the most important
feature is that additional stationary solutions appear and coexist beyond an hysteresis
limit given by α2 = 4γ. Moreover, when existing, the three steady states of the system
lay on a straight line defined by

ySS = α− γxSS. (3)

Explicit expressions for these two non-trivial steady states read

xSS2 =
α+

√
α2 − 4γ

2γ
, ySS2 =

α−
√
α2 − 4γ
2

,

(4)

xSS3 =
α−

√
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2γ
, ySS3 =

α+
√
α2 − 4γ
2

,

and are represented in terms of the pair of control parameters in figure 1.
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Figure 1. Plots of the steady state solutions for the concentration of the autocatalytic species Y in the
irreversible version of the Sel’kov model. Solid lines refer to linearly stable solutions, whereas broken
and dotted lines represent unstable determinations. Note, in particular, that the intermediate solution ySS2

corresponding to steady state SS2 is always unstable, whereas ySS3 for SS3 behaves mostly as stable
except when approaching the hysteresis limit for small values of γ, where it becomes unstable (see text).

A straightforward linear stability analysis can be applied to the previously identi-
fied steady states. Classifying them simply in terms of the corresponding concentration
of the autocatalytic species, the outcome of such an analysis is summarized as follows.
The null y-steady state, denoted SS1 hereafter, is always a stable node. The steady
state of intermediate y-values, denoted SS2, behaves as a saddle point. Finally, the
steady state of large values of y, denoted SS3, shows, depending on the values of α
and γ, a very rich dynamical behavior, including stable and unstable, either node or
focus, characteristics. The whole phase diagram is displayed in figure 2. A typical
plot of the eigenvalues corresponding to such an analysis for SS2 and SS3 is shown in
figure 3. Just in passing, and totally according to what was anticipated in the introduc-
tion, we should emphasize at this point that all the front propagation conditions that
are going to be discussed later on correspond to situations for which SS3 is a stable
fixed point and for most of them behaving as a node.

2.3. One-dimensional fronts: model and algorithmic details

Spatial degrees of freedom are simply incorporated into our model by writing
down the pair of coupled reaction–diffusion equations appropriate to the previously
introduced kinetic scheme. Following a convenient spatial adimensionalization, and in
terms of the ratio of diffusion coefficients δ, δ = Dx/Dy , these two equations read{

∂x/∂t = α− γx− xy2 + ∂2x/∂ζ2,

∂y/∂t = xy2 − y + (1/δ)∂2y/∂ζ2.
(5)
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Figure 2. Phase diagram displaying the three steady states of the system in terms of their stability
properties. The solid line represents the hysteresis limit αhys(γ) = 2γ1/2. Broken lines separate regions
with different stability properties for the SS3 steady state: s(u).n., stands for stable (unstable) node and

s(u).f., denotes stable (unstable) focus.

(a) (b)

Figure 3. Eigenvalues corresponding to the linear stability analysis for steady states SS2 and SS3 plotted
versus α for two values of γ. (a) For γ = 1.1, SS3 is a stable node; (b) for γ = 0.8, SS3 is born
from the hysteresis limit as a stable node which turns into a stable focus (only the negative real part is

depicted) and, finally, converts again into a stable node.

The discretization procedure applied to (5), is based on a first order Eulerian
scheme for the time derivative and centered forms for the Laplacian operator. A typical
propagating front evolving from a step-like initial condition is presented in figure 4.
After a normally quite short transient regime, an invariant profile connecting the pair
of steady states is established and advances with a constant velocity. Initial conditions
different from those represented in that figure, i.e., non-localized distributions rather
than step-like profiles, will also deserve much attention on what follows. They are
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Figure 4. Typical propagating front connecting the two steady states SS1 and SS3, initiated with a step-
like profile (localized distribution or compact support). The two concentration variables are shown in the
plot, the x-values shifted 1.5 units to avoid overlapping with the y-profile. The chosen values of α, γ

and δ are: α = 2.2; γ = 1.0; δ = 1.0. Fronts are typically separated by an amount of 10000 ∆t.

prescribed according to simple exponential profiles

x(ζ , 0) =

{
xSSi, −∞ < ζ 6 0,
xSSj + (xSSi − xSSj)e(−kζ), 0 < ζ <∞,

(6)

y(ζ , 0) =

{
ySSi, −∞ < ζ 6 0,
ySSj + (ySSi − ySSj)e(−kζ), 0 < ζ <∞.

Obviously, the propagation velocity has a trivial sign degeneracy depending on
the respective localization of the pair of opposed steady states. Positive values are
arbitrarily chosen on most of what follows to represent the invasion from left to right,
along the distributed system, of an unstable or metastable state by a more stable one.

2.4. Numerical results

As occurs in most of the situations dealing with front propagation, significatively
different results are obtained for the propagation velocities and front profiles when
respectively starting from localized or contrarily with distributed initial profiles con-
necting the pair of confronted steady states. Consequently, we are going to describe
both situations separately on what follows.

2.4.1. Localized initial conditions
Restricting ourselves, as anticipated, to situations with multiple stability, two dif-

ferent stable/unstable connections linking SS1 or SS3 to the invaded unstable state SS2
can be considered. Results for the propagation velocities in both cases are respectively
shown in figure 5 (a) and (b), in terms of the pair of control parameters α and γ. In
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(a) (b)

Figure 5. Front propagation velocities plotted versus α for different values of γ corresponding to the
invasion of the unstable state SS2 by a stable one. (a) Connection SS1/SS2; (b) connection SS3/SS2.

All the results correspond to equal diffusivities (δ = 1.0).

Figure 6. Front propagation velocities plotted versus α for different values of γ corresponding to the
connection SS3/SS1. All the results correspond to equal diffusivities (δ = 1.0).

that figure and on all what follows, unless otherwise stated, we assume a condition of
equal diffusivities for the pair of intermediates, i.e., δ = 1.

Now we turn to the connection between the two stable states SS1 and SS3. The
corresponding results, presented analogously as in figure 5, are now summarized in
figure 6 for the distribution SS3/SS1 (the notation is not arbitrary in this case since
both steady states are now stable: we choose to locate SS3 at the left, whereas SS1
extends to the right). The most important feature to be noticed here is the clear
signature we found of exchange of stability between these two steady states which is
nicely exhibited in terms of a velocity reversal. In other words, for each value of γ,
there exists a singular value α∗(γ) such that v(α∗) = 0. According to the previously
introduced notation, we clearly conclude that for most of the considered situations the
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null y-steady state SS1 behaves as the mestastable state, whereas SS3 acts as the stable
one.

2.4.2. Non-localized initial conditions
We turn now to the situation with non-localized initial conditions. Here we are

forced to distinguish between a connection linking a stable and a metastable state from
the complementary situation opposing a stable and a unstable steady state. In the first
case, regardless of the initial preparation of the distributed system, the propagating
front rapidly attains the steady profile and advancing velocity corresponding to the
step-like initial condition examined in the previous subsection.

The situation is rather different when a stable state extends in front of a unstable
one. Actually, in this case, sometimes referred in the literature as non-compact sup-
port, we encounter for the first time the well-known situation typical of many front
propagation problems, where different solutions may exist within a continuous band
of allowed velocities. Such a band of permitted velocities actually correspond to sta-
ble profiles with different spatial decays. This is precisely the contents of figure 7.
Assuming that the propagation velocity is going to be univocally determined by the
spatial decay at the leading edge of the front, which according to the initial distribu-
tion (6) is exponentially parametrized in terms of a wavenumber k, the front velocity
is found to monotonously decrease as the profile gets steeper. Moreover, there is a
minimum value v† adopted at a particular k-value, k†(α, γ). This minimum value, on
the other hand, is the one selected starting with initial conditions decaying faster than
exp(−k†x) (compact support), and in particular, coincides, as it should be, with the
corresponding value for the step-like initial profiles considered earlier.

2.5. Analytical results

Theoretical calculations in the context of front propagation often supposes a quite
involved task. However, some strategies can be followed. First of all, exact solutions
for the front profiles and velocities can be always calculated for the particular case
γ = 1. Although this outcome may appear at first thought as a rather limited success,
it turns out that such an exact calculation suffices to illustrate, as explained below, the
crucial question of the velocity selection. Secondly, the band of allowed velocities, for
general values of α and γ, in the case of distributed initial conditions extending over a
unstable state admits a rather simple evaluation in terms of a linearization procedure.

2.5.1. Exact solution for γ = 1
An exact calculation of the propagating front solution can be obtained in this

case by employing an ansatz of reduction of order [16,20,25]. This method basically
assumes that the profile obeys a first-order differential equation with some additional
constraints prescribed in order to satisfy the boundary conditions. The general solution
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Figure 7. Front velocities corresponding to the pair of stable/unstable connections for distributed initial
conditions and equal diffusivities (δ = 1.0). Initial distributions are prescribed in terms of an exponential
fall-off parametrized by a wavenumber k (see text). Symbols correspond to numerical results, whereas
the lines either continuous (stable solutions) or broken (unstable solutions) correspond to the analytical
prediction arising from a linearization procedure (see equation (16)). Squares (resp., triangles) stand for

the connection SS1/SS2 (resp., SS3/SS2). The chosen values of α and γ are α = 3.0 and γ = 1.0.

for the velocity is then given by

v =
1
h

[
−α+

3
2

(y−∞ + y∞)

]
, h2 = 1/2. (7)

When specializing it to the pair of stable/unstable connections and to the sta-
ble/metastable one, one has respective explicit expressions for the velocities which
read

SS1/SS2: vnl =
1

2
√

2

(
α+ 3

√
α2 − 4

)
, (8)

SS3/SS2: vnl = α/
√

2, (9)

SS3/SS1: vnl = − 1

2
√

2

(
α− 3

√
α2 − 4

)
. (10)

2.5.2. Velocity degeneracy for propagation over unstable states
Rather than to obtain simultaneous explicit expressions for the advancing veloci-

ties and front profiles, a commonly impracticable task for distributed initial conditions,
we limit ourselves here to simply evaluate front velocities for stable/unstable connec-
tions. The idea is to use a linearization procedure applied to the leading edge of the
front [19]. The final outcome is a sort of dispersion relation, which gives the front
velocity in terms of the spatial exponential fall-off of the front profile extending into
the unstable state. Since the calculation is rather straightforward, we simply give the
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final result which is readily expressed in terms of the positive eigenvalue of the SS2
steady state

vl(k) =
k2 + λ(+)

SS2

k
,

λ(+)
SS2 =

1
2

{
1−

(
α−

√
α2 − 4γ

)2

4
− γ +

[(
2− α2 + α

√
α2 − 4γ

)2

4

−
(
α−

√
α2 − 4γ

)2
+ 4γ

]1/2
}
. (11)

In figure 7, this result is compared with the front propagation velocities numerically
calculated for the the two stable/unstable connections. The minimum value of the
velocity, v†, and corresponding asymptotic spatial decay, k†, are also easily evaluated
from equation (11). Explicit expressions read

k† =

√
λ(+)

SS2, v† = 2
√
λ(+)

SS2. (12)

Two main comments are now in order. First of all, note that the right branch of
predicted velocities are never realized in our numerical simulations. They would corre-
spond to unstable solutions according to the arguments of Van Saarloos [19]. It is then
easy to understand the general velocity selection principle: for sufficiently localized
initial conditions (compact support), the dynamically selected velocity corresponds to
the speed of the stable front propagating with the steepest decay to the unstable state.
As far as the velocity is dynamically selected through this simple linearization prin-
ciple, such an advancing front adapts its asymptotic spatial fall-off to the value of k†

and its velocity is given by v†. This is what is known in the literature as the linear
marginal stability criterion for velocity selection.

However, there is an important remark to be made in relation with this last state-
ment. It is just a matter of comparing the results for the two possible stable/unstable
connections. Note in this sense that for the particular values of α and γ considered in
figure 7, most of the stable left branch of allowed velocities do really represent front
connections of the unstable state SS2 with the stable one, this last one irrespectively
of being the SS1 or the SS3 state: the velocities totally coincide in both cases. How-
ever, note also that some clear discrepancies appear close to the minimum velocity.
Evenmore, one should notice that such a value itself does not reproduce the connection
SS3/SS2.

This apparent failure is not at all fortuitous and admits a clear interpretation
in terms of the so-called nonlinear marginal stability criterion [20]. According to
his analysis, there are indeed situations in which the linear marginal stability criterion
mentioned above fails. Then, the velocity is selected according to the nonlinear version
of such marginal stability criteria. As it is clearly exhibited in figure 7, for the values
of the system parameters there chosen, the connection SS1/SS2 follows the linear
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(a) (b)

(c)

Figure 8. Front velocities corresponding to the three possible connections: SS1/SS2 (a), SS3/SS2 (b)
and SS3/SS1 (c), for γ = 1.0, plotted against α (δ = 1.0). Symbols stand for numerical simulations.
Continuous lines represent the full nonlinear exact solutions (see equations (13)–(15)), whereas broken
lines correspond to the analytical solutions obtained from a linearization procedure (see equation (17)).

marginal stability criterion for selecting the front velocity, whereas, contrarily, the
nonlinear version applies to the front SS3/SS2.

The remaining question is then obvious and refers to whether or not the assign-
ment just made for the pair of front connections to their respective velocity selection
principle is a sort of general conclusion or rather depends on the particular chosen
values of the system parameters α and γ. At this point, the knowledge of the ex-
act,nonlinear, solution for γ = 1 turns out to be crucial. In figure 8, we compare
the exact velocities, (7), and those obtained with our linearization procedure with the
numerical calculations of the front velocities for this particular value of γ and different
values of α. The comparison extends to every possible front connection, i.e., to the pair
of stable/unstable and to the stable/metastable front situation. Specially remarkable to
the light of the discussion in the last paragraph are the results of figure 8 (a) and (b).
According to the results in this figure, it is clearly verified that there is an exchange
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(a) (b)

(c)

Figure 9. Front propagation conditions originated from spatially shifted initial step-like profiles. Case (a)
corresponds to a single front, whereas (b) and (c) show double front propagation conditions. In (b),
the two fronts propagate consecutively, whereas in (c) they separate apart. The x-values are arbitrarily
shifted in the ordinates to avoid overlapping with the concentrations of the autocatalytic species. In the

three cases α = 2.5, γ = 1.0 and δ = 1.0

between the role of both marginal stability criteria in selecting the front velocity when
varying α. Being more specific, we conclude that the connection SS1/SS2 follows for
most of the α values the linear solution, except close enough to the hysteresis limit
where the nonlinear criterion applies. The situation is just the opposite one for the
front SS3/SS2, since there the nonlinear criterion prevails, except again close enough
to the hysteresis conditions, where, this time, the linear solution is the relevant one.

As a final comment, let us remark that this conclusion completely agrees with a
statement formulated by Van Saarloos [20]), who proved that the linear marginal stabil-
ity criterion is generally valid near a supercritical bifurcation (or continuous transition),
while front propagation close to a subcritical bifurcation (or first order transition) is
going to be generally governed by nonlinear marginal stability considerations. Accord-
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Figure 10. Pulse propagating over SS1 steady state under excitability conditions. The y-profiles are
represented by continuous lines, whereas those of the x-variables are here depicted by dotted lines. The
initial condition only refers to the autocatalytic species and, at is shown, is placed at the center of the

distributed system. The conditions are α = 0.23, γ = 0.05 and δ = 1.0.

ing to figure 1, it is obvious that close to the hysteresis limit one could say that the
SS1 and SS2 steady states are somewhat connected through a discontinuous transition,
whereas, by definition, SS3 and SS2 continuously merge at that limit. Just the opposite
behavior would apply to the limit of large values of α.

2.6. Other phenomenology

As mentioned in the introduction, in the course of our work we found particular
conditions, either referring to the initial conditions or to the prescribed values of α and
γ, which originated peculiar spatio-temporally evolving patterns. We classify them in
two different categories: (i) double fronts, and (ii) pulse propagation.

2.6.1. Double fronts
The fact that we are dealing with a two-variable system, enables us to consider

a specific choice of initial conditions corresponding to step-like but, this time, shifted
spatial profiles for the pair of chemical species. Some specific examples are depicted
in figure 9. Under these circumstances we can detect situations of double fronts either
propagating in the same direction or separating each other as time goes on.

2.6.2. Pulse propagation
Sel’kov’s model shows excitability properties around SS1 for very small values

of α and γ. The same behavior is observed in the irreversible version considered here.
Following then a localized initial perturbation on this steady state, a pulse-like solution
propagates with a very sharp profile as illustrated in figure 10.
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3. Front propagation in spatially modulated and noisy media

Just to approach some more realistic scenarios of front propagation we are going
to consider in this section a somewhat more generic reaction scheme in relation to
front propagating in spatially modulated and noisy media [1,2].

3.1. Front propagation in spatially modulated media

In order to set the problem let us consider the evolution of a linear interface y(x, t)
that is moving in the y-direction and subjected to a spatial modulation in the transversal
x-direction. In a broad class of systems the dynamics of an interface is given by the
so-called eikonal equation, which states that the local normal velocity is equal to the
planar interface velocity plus a correction coming from the curvature [27]. This result
can be extended to the case in which there exists a sufficiently smooth modulation of
the control parameter. Then, in terms of the local velocity u(x) corresponding to the
planar front solution, we have

vn(x, t) = u(x) + κ(x, t), (13)

where vn(x, t) is the local normal velocity and κ(x, t) is the curvature.
In figure 11 it is shown an example of temporal evolution of the interface for a

u(x) with several local maxima. Starting with a planar front, a configuration with the
same number of fingers is formed, which are strongly dominated by the neighborhood
of the corresponding local maxima of u(x). However, after this short transient a slow
process of competition starts, during which some slow fingers will be eliminated and
some of them will survive. The nature of this competition process is more clearly
shown in figure 12, where the local velocity in the y-direction (∂y/∂t) is plotted
for a particular case of a modulating function with two local maxima. Both of the
fingers that appear have well defined shape and velocity. It is clearly seen how the
competition between them can be described by an invasion front that advances into
the slower finger, which finally disappear.

We assume that the modulation is sufficiently smooth, so we can analyze equa-
tion (13) by means of a perturbative scheme in the limit of small curvatures. This
turns out to be a singular perturbation. As a result for each local maximum i of u(x)
there is a roughly stationary finger propagating with a velocity vi given at the lowest
order by

vi = uim −
√
|ui′′m|
uim

+ · · · , (14)

where uim is the maximum of u(x) in the finger i, and ui′′m its second derivative at the
same maximum. We see that the curvature correction for the velocity of the finger is
given by a length, which is nothing but the length scale of the spatial variation of the
modulating function u at its local maximum.
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Figure 11. Temporal evolution of an initially flat front. Fronts are shown in the frame comoving with
the fastest finger (4). At early times, the front y(x, t) mimics the modulated local velocity u(x) with 8
maxima (bottom). Three slow fingers are eliminated before the front reaches the stationary shape with

only 5 fingers. The front is plotted at times: 0, 10, 20, 200, 2500, 15000 and 300000 (solid line).

Figure 12. Competition process between two fingers. The vertical component of the local velocity of
the front is plotted every t = 50 for the same evolution showed in figure 11. The effective transversal

velocity c is also indicated.
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The dynamics of finger competition can be found at the lowest order from the
solution inside the boundary layers between them. We can found a stationary solution
that can be seen as a one-dimensional front moving laterally at velocity c, which
represents the invasion of the slower finger by the faster one. This velocity is given
by their respective velocities and contact angles as

c =
v+ − v−

tan θ− − tan θ+
. (15)

This represents basically a kinematic process, in which the boundary moves as dictated
by the velocities of each finger.

The next point to address is the final stationary state. From the lowest order
approximation, it can be shown that for smooth enough modulation, only the fastest
finger given by the absolute maximum uM of the modulating function will survive. In
that case the velocity of the whole front is given by

v = uM −

√
|u′′M |
uM

+ · · · . (16)

The solution of the front shape for a not very smooth u(x) may differ qualitatively
from the lower order solution, with the existence of additional fingers. However, the
number of surviving fingers (i.e., number of maxima of the stationary front shape) are
given by a simple comparison between the actual selected velocity v and the local
maxima of u(x). The front shape will develop fingers at those maxima of u(x) larger
than v. A good estimate of the selected velocity v can be obtained in turn from the
perturbative analysis and corresponds to the largest of the different values taken by vi

when evaluated at the different local maxima of u(z).
In summary, we have seen that the steady state front velocity and the number of

surviving fingers follow very simple rules found from a local analysis at the different
maxima of the modulation u(x).

3.2. Front propagation in noisy media

We now study the effects of external noise in a one-dimensional model of front
propagation. Noise is introduced through the fluctuations of a control parameter leading
to a multiplicative stochastic partial differential equation.

Our starting point is an equation of the form

∂ψ

∂t
=
∂2ψ

∂x2 + ψ(1 − ψ)(a+ ψ) + ψ(1− ψ)ξ(x, t). (17)

In this equation the coefficient of the linear term stands for an external control
parameter, whose fluctuations around its mean value a are modeled by a Gaussian
noise of zero mean and correlation given by〈

ξ(x, t)ξ(x′, t′)
〉

= 2δ(t− t′)ε
(
|x− x′|
λ

)
.
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The function ε(x) accounts for the spatial correlations of the external fluctuation and
the parameter λ is the associated correlation length, which we take as small. The
model has three homogeneous steady states ψ = 0, 1,−a. Their stability depends on
the particular value of a, which is allowed to vary in the interval (−1/2, 1) to ensure
the global stability of the ψ = 1 state.

We are interested in the case in which a uniformly propagating front is moving
to the right replacing the ψ = 0 state by the ψ = 1 state. In the absence of noise,
this situation has been extensively studied in the last few years [19,20].

Analysis of simulation data reveals that the noise not only induces a shift of the
ensemble averaged velocity but also a diffusive spreading of the front position. The
front presents a well defined mean shape which is different from the deterministic
kink solution and which is obtained when the roughness of the front is appropriately
averaged out. We formally develop equation (17) in powers of the fluctuations of the
front shape, and we obtain in the lower order the equation for the mean shape p0(x)
of the front:

∂p0

∂t
=
∂2 p0

∂x2 + p0(1− p0)
(
a′ + c′p0

)
, (18)

where a′ = a + ε(0) and c′ = 1 − 2ε(0). We see in this equation that the mean
front profile obeys a deterministic dynamic equation but with renormalized parameters.
Therefore the selected shape and velocity of the front, within the present approximation,
can be found from the known results for deterministic equations of this type.

The multiplicative noise increases the control parameter a′ > a and so the strength
of the linear term, and it reduces the weight of the nonlinearities of the deterministic
model trough the parameter c′ < 1. Hence one could expect an increase of the
propagating velocity and an increase of the domain of validity of the linear marginal-
stability criterion as the intensity of the noise is increased.

As a simple linear stability analysis indicates, for a > −ε(0), the ψ = 0 state
is unstable and then a continuum of propagating velocities is possible. The mini-
mum of them is given by the different linear and nonlinear-marginal-stability criteria.
Specifically, the linear regime (L) is now delimited by the control parameter range
1/2 − 2ε(0) 6 a < 1 (figure 13). In this range, any initial profile that asymptotically
falls off more quickly than e−κLx with κL =

√
a+ ε(0), propagates with the long time

asymptotic velocity

vL = 2
√
a+ ε(0) (19)

and a decay κL. On the other hand, the nonlinear regime (NL) holds for −ε(0) 6 a <
1/2− 2ε(0) (figure 13). Here the long time asymptotic propagation velocity for initial
profiles with k > κ∗ = (a+ ε(0))/

√
1/2 − ε(0) is given by

vNL =
2a+ 1√

2(1− 2ε(0))
, (20)

which decays with a κNL =
√

1/2 − ε(0).
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Figure 13. Front velocities versus noise intensity ε(0) for several values of a. Continuous lines display
analytical predictions. Dashed lines divide the different regimes. Points and their error bars correspond

to numerical simulation starting from step-like profiles (∆x = 0.5 and ∆t = 10−2).

The multiplicative noise reduces the metastable regime (M) to the range −(1/2) 6
a < −ε(0) (figure 13). In this case, a unique front solution is allowed with a propa-
gating velocity given by equation (20) and κNL.

Simulation results for the front velocity are shown in figure 13 with the predictions
of equations (19) and (20). The different regimes (L, NL and M) are also displayed
and it is shown how the linear criterion extends its range of validity as the intensity of
the noise is increased. The agreement of the theoretical prediction with the simulation
results is remarkable even for large values of the intensity of the noise.

4. Front propagation in turbulent media

Let us consider a two-dimensional front propagating in a turbulent medium [12].
Here, in addition to the previously discussed length and time scales of the front prop-
agating in a quiescent media, the spatio-temporal scales introduced by the turbulent
flow will play a fundamental role. The interface, now distorted by the inhomogeneities
of the media, will propagate at a different velocity vT , which is larger than the velocity
in a quiescent media v0, to an extent that will depend singularly on the characteristics
of the media.

In this way formulated, the problem is of fundamental interest when study-
ing chemical fronts in fluid media and of special practical relevance in combustion
processes [26]. However, in spite of this wide appealing, existing theoretical and ex-
perimental results are far from being totally conclusive and important discrepancies
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remain in fundamental aspects such a turbulent propagation rates, velocity quenching
effects, role of turbulent spectra, etc. [17].

An enlarged perspective has been gained recently when experiments on liquid
phase reactions [23] have brought out a more simplified scenario as compared to
that of combustion processes. In such liquid reactions the change of density and the
increasing of the temperature are negligible compared with those occurring in typical
combustion processes [9,18]. In this way, experimentalists are closer to reproduce the
set of simplified assumptions invoked by most of the theoretical models.

In our approach we focus on front propagation under externally imposed stirring
conditions. The turbulent flows are generated, independently of the front, by using
a stochastic partial differential equation of Langevin type. The outline of the rest of
this section is as follows. In the following section we present a brief summary of our
stochastic method to generate turbulent flows. We devote section 4.2 to discuss the
propagation modes observed and their proposed theoretical basis.

4.1. Turbulent media modelization

Here we summarize the basic ingredients of our scheme to generate a statistically,
homogeneous, and stationary turbulent field [13]. Our starting point is a generalized
Langevin equation for a stream function η(r, t),

∂η(r, t)
∂t

= ν∇2η(r, t) +Q
[
λ2∇2]∇ζ(r, t), (21)

where ν is the kinematic viscosity and ζ(r, t) is a Gaussian white noise process of
zero mean and correlation〈

ζi(r1, t1)ζj(r2, t2)
〉

= 2ε0νδ(t1 − t2)δ(r1 − r2)δij . (22)

In the last equations ε0 and λ are control parameters, respectively related to the intensity
and correlation length of the random flow. The differential operator Q[λ2∇2] is closely
related with the energy spectra which can be arbitrarily chosen in our scheme. As a
first example we adopt the Kraichnan’s spectrum describing a distributed band of
excitations around a well pronounced peak centered at a well-defined wave number k0

E(k) ∝ k3 exp
[
−k2λ2]. (23)

From the stream function the two-dimensional incompressible advecting flow
with zero mean-value is obtained according to the following linear transformation:

v(r, t) =

(
−∂η(r, t)

∂y
,
∂η(r, t)
∂x

)
. (24)

The physical parameters of the flow, i.e., the stirring intensity u2
0, the characteristic

length l0 and time t0 scales are easily expressed in terms of the input parameters
described above.
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Figure 14. Pattern of a particular realization of the velocity field for the Kraichnan’s spectrum. The
arrows represent the velocity field painted every 4 mesh points in a normalized arbitrary scale. Parameter

values: 128× 128 points, lattice spacing ∆ = 0.5, ε0 = 100.0, ν = 2.0 and λ = 8.0.

The system is discretized according to standard procedures and next the temporal
evolution is readily simulated in Fourier space. In figure 14 we plot a snapshot of the
velocity field. The small arrows plotted every 4 mesh point indicate the local velocity
field.

4.2. Turbulent front model

The next step is the formulation of the reaction–diffusion–advection scheme. We
model this situation by means of a dynamical equation for a passive scalar field ψ(r, t)
in a two-dimensional space:

∂ψ

∂t
= D∇2ψ + f (ψ)−∇(vψ), (25)

where D is the molecular diffusivity, f (ψ) is a nonlinear reaction term and v(r, t) is
the random flow. In our numerical simulation we have chosen f (ψ) = ψ2 − ψ3. In
this case stable planar front propagates the stable state (ψ = 1, “products”) into the
invaded metastable one (ψ = 0, “reactants”). In the absence of stirring (u2

0 = 0) two
important parameters are the dimensionless propagation rate and the front thickness,
which, respectively, read

v0 = (D/2)1/2, δ0 = (8D)1/2. (26)

Superposing stirring, two limiting regimes of front propagation are found in our
simulations. First, when the typical length scale of the flow l0 is larger than the
intrinsic one associated to the reaction–diffusion dynamics δ0, we observe a distorted
front which propagates as a still rather sharp interface. Such a propagation mechanism
is known in the combustion literature as the “thin flame,” “flamelet” or “reaction sheet”
regime [9,18]. Contrarily when l0 is smaller than δ0, we observe what is referred in
the literature as a DRZ regime [9,18], i.e., a broadened front disrupted by the stirring
flow. In both cases, turbulent propagation rates are larger than in quiescent media. To
illustrate this phenomenology in figure 15 we display two pattern of the mentioned
propagation modes.
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Figure 15. Density plots of the stirred reaction front propagating. Thin front mode (left, D = 0.3,
u2

0 = 3.0, λ = 4.5 and t0 = 1.0), distributed reaction front regime (right, D = 2.0, u2
0 = 10.0, λ = 2.2

and t0 = 1.0).

Each one of the previously identified conditions correspond to a specific propa-
gation mechanism. The common rationale behind the “thin flame” mode is based on
a HP-like argument: the front has the same local structure as in the planar case with
normal velocity given by v0, but its length increases due to wrinkling. This results on
faster propagation velocities, in such a way that the relative increment in the velocity
is equal to the relative increment of increment in the velocity is equal to the relative
increment of the length. This geometrical relation can be translated into quantitative
arguments

LT
L0

=
vT
v0
. (27)

On the other hand, stirring is assumed to affect the velocity in the DRZ regime
by solely increasing diffusive transport inside the broadened front. In this case, we
simply adapt the first fundamental relation of equation (26) to obtain

vT
v0

=

(
DT

D

)1/2

, (28)

where DT is the turbulent diffusion coefficient. These propagation modes have been
observed in our numerical simulations. According to our results the arguments leading
to relations (27) and (28) seem well-supported. The simplicity and versatility of the
computer implementation of turbulent flows and the simple model used to describe
the front propagation in these media open new perspectives in the study of more
complicated situations in turbulent fluids.
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